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Transcendental Equations 

Imprecise Precision in Mathematics

     In mathematics there are certain formulas that are sometimes 

known as "transcendental" equations. A "transcendental" equation 

occurs when two fundamentally different systems are brought together.

     The most well known of the "transcendental" equations is the 

solution for "pi" representing the ratio between the circumference of

a circle and the diameter of a circle. The actual process is vary 

simple. A circle is first divided into six equilateral triangles with

by definition each of the six sides having a length equal to the 

radius. Then a line is drawn from the center to a point on the 

circumference of the circle. This line bisects one of the equilateral

triangles. Now a new chord is drawn between the original point on the

circumference and the new point of bisection. Using the Pythagorean 

theorem, the length of this new chord is determined. It will be 

shorter that the original chord, but there will be twice as many. 

This procedure is repeated as many times as needed. Here is an 

illustration of this division.
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     Here we have the first level of division worked out for the 

calculation of pi with respect to the preceding 1llustration.

     Let us take a quick look at the second stage.

     At the third stage there is another twist which carries through 

the entire pattern. The next sequence will show this final twist to 

the process for calculating for pi.
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     Here is a simple LIBERTY BASIC v4.03 computer program indicating

the utilizing the procedure.

   REM LIBERTY BASIC v4.03 Program
   REM Imprecise Precision in Mathematics.bas
 INPUT "Enter number of steps for pi: "; t
 PRINT "n =  0       pi = 3.00000000"
   LET n = 1
   LET a = 1
 WHILE n <= t
   LET b = (1 - (a/2)^2)^(1/2)
   LET c = 1 - b
   LET d = ((a/2)^2 + c^2)^(1/2)
   LET p = 2^n * 3 * d
 PRINT "n = "; using("##",n); "       pi = "; using("#.########",p)
   LET n = n + 1
   LET a = d
  WEND
   END

Enter number of steps for pi: 14
n =  0       pi = 3.00000000
n =  1       pi = 3.10582854
n =  2       pi = 3.13262861
n =  3       pi = 3.13935020
n =  4       pi = 3.14103195
n =  5       pi = 3.14145247
n =  6       pi = 3.14155761
n =  7       pi = 3.14158389
n =  8       pi = 3.14159046
n =  9       pi = 3.14159211
n = 10       pi = 3.14159252
n = 11       pi = 3.14159262
n = 12       pi = 3.14159265
n = 13       pi = 3.14159265
n = 14       pi = 3.14159265
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     There are three problems with this program. Here are the 

problems in order.

 

     [1] The first problem is that the calculation precision is 

dependent on the number of digits that the computer can use at any 

one time. If an abacus were used instead, the same issue would apply 

to the number of bead rows. Pen and paper might do better, but the 

procedure would become too tedious leading to transcription errors.

     [2] The second problem is the need to round out the solution. 

This is an endless cycle that cuts inside of the circle. The natural 

solution is to always round out short. However, sometimes it is 

rounded high. Pi is used in trigonometry. Near the cardinal points is

is vital to know if it is rounded low or rounded high.

     [3] The third problem is that the resulting irregular square 

roots are solved by taking the natural log of the number, dividing it

by two, and then taking the natural anti-log of the result in order 

to find the length of the new chord. Both the prerequisite natural 

log and the prerequisite anti-log are also "transcendental" 

equations, each solved by an infinite sequence. 

     Let us consider the Taylor infinite series for determining the 

natural log of a number. This is written in the handbook as:

     The natural logarithms have a base of 2.71828183. That is to 

say, Ln(2.71828183) = 1. Thus Ln(2.71828183)2 = 2, and so on. When we

square a number, we take the log of the number, and then we multiply 
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the log by two in order to obtain the log of the of the square. 

Alternately, when we take the square root of a number, we take the 

log of the number, and then we divide the log by two in order to 

obtain the log of the of the square root. The question here is just 

how precise is this procedure. This is important because when we 

calculate for pi, we have one transcendental equation feeding another

transcendental equation in order to just process the logarithms.

     Here is a little LIBERTY BASIC v4.03 program written to evaluate

the relative precision of the applicable transcendental equation.

   REM LIBERTY BASIC v4.03 Program
   REM Taylor Natural Log.bas
 INPUT "Enter number of terms: "; t
 INPUT "Enter a value for x  : "; x
   LET n = 1
   LET d = 0
 WHILE n <= t
   LET a = (x - 1)/(x + 1)
   LET b = 2 * n - 1
   LET c = d + (1/b) * (a^b)
   LET e = 2 * c
 PRINT "n = "; using("##", n); "    ln(x) = "; using("#.########", e)
   LET n = n + 1
   LET d = c
  WEND
  END

    In this program, the number of terms and the value of “x” is 

entered. The program returns the calculated value of ln(x) for each 

of the number of terms in the sequence. Let us examine some of the 

returns.
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Enter number of terms: 20
Enter a value for x  : 2.7182
n =  1    ln(x) = 0.92421064
n =  2    ln(x) = 0.98999636
n =  3    ln(x) = 0.99842514
n =  4    ln(x) = 0.99971078
n =  5    ln(x) = 0.99992431
n =  6    ln(x) = 0.99996162
n =  7    ln(x) = 0.99996836
n =  8    ln(x) = 0.99996961
n =  9    ln(x) = 0.99996984
n = 10    ln(x) = 0.99996989
n = 11    ln(x) = 0.99996989
n = 12    ln(x) = 0.99996990
n = 13    ln(x) = 0.99996990
n = 14    ln(x) = 0.99996990
n = 15    ln(x) = 0.99996990
n = 16    ln(x) = 0.99996990
n = 17    ln(x) = 0.99996990
n = 18    ln(x) = 0.99996990
n = 19    ln(x) = 0.99996990
n = 20    ln(x) = 0.99996990

Enter number of terms: 20
Enter a value for x  : 7.3891
n =  1    ln(x) = 1.52319081
n =  2    ln(x) = 1.81768836
n =  3    ln(x) = 1.92017837
n =  4    ln(x) = 1.96264054
n =  5    ln(x) = 1.98179660
n =  6    ln(x) = 1.99088746
n =  7    ln(x) = 1.99534918
n =  8    ln(x) = 1.99759205
n =  9    ln(x) = 1.99873993
n = 10    ln(x) = 1.99933564
n = 11    ln(x) = 1.99964826
n = 12    ln(x) = 1.99981383
n = 13    ln(x) = 1.99990217
n = 14    ln(x) = 1.99994962
n = 15    ln(x) = 1.99997525
n = 16    ln(x) = 1.99998915
n = 17    ln(x) = 1.99999673
n = 18    ln(x) = 2.00000087
n = 19    ln(x) = 2.00000314
n = 20    ln(x) = 2.00000439

Enter number of terms: 20
Enter a value for x  : 20.0855
n =  1    ln(x) = 1.81029618
n =  2    ln(x) = 2.30468387
n =  3    ln(x) = 2.54771292
n =  4    ln(x) = 2.68993578
n =  5    ln(x) = 2.78056417
n =  6    ln(x) = 2.84131515
n =  7    ln(x) = 2.88343065
n =  8    ln(x) = 2.91333493
n =  9    ln(x) = 2.93495290
n = 10    ln(x) = 2.95079999
n = 11    ln(x) = 2.96254688
n = 12    ln(x) = 2.97133415
n = 13    ln(x) = 2.97795755
n = 14    ln(x) = 2.98298209
n = 15    ln(x) = 2.98681476
n = 16    ln(x) = 2.98975226
n = 17    ln(x) = 2.99201307
n = 18    ln(x) = 2.99375949
n = 19    ln(x) = 2.99511298
n = 20    ln(x) = 2.99616502

Enter number of terms: 20
Enter a value for x  : 54.5982
n =  1    ln(x) = 1.92805522
n =  2    ln(x) = 2.52533411
n =  3    ln(x) = 2.85838251
n =  4    ln(x) = 3.07946700
n =  5    ln(x) = 3.23927288
n =  6    ln(x) = 3.36078554
n =  7    ln(x) = 3.45633974
n =  8    ln(x) = 3.53330254
n =  9    ln(x) = 3.59641311
n = 10    ln(x) = 3.64889100
n = 11    ln(x) = 3.69301650
n = 12    ln(x) = 3.73045859
n = 13    ln(x) = 3.76247162
n = 14    ln(x) = 3.79001911
n = 15    ln(x) = 3.81385475
n = 16    ln(x) = 3.83457724
n = 17    ln(x) = 3.85266849
n = 18    ln(x) = 3.86852084
n = 19    ln(x) = 3.88245686
n = 20    ln(x) = 3.89474411

     The upper left return represents the case for e1. The upper 

right represents the case for e2. The lower left represents the case 

for e3. The lower right represents the case for e4. Observe the four 

place imprecision, (because the number was entered in four places). 
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     The logarithms are a tool of convenience. We may readily 

multiply and divide by simply adding and subtracting logarithms. The 

slide rule was specifically designed to add and subtract logarithms. 

Irrational powers of a number may be facilitated by the use of 

logarithms. If a logarithm is multiplied by another number, the 

product is the exponent or root of the number as the case may be. 

Thus, when the logarithm of a number is multiplied by 2, the product 

is the square of the number. Alternately, when the logarithm of a 

number is multiplied by 1/2, the product is the square root of the 

number.

     This is all nice and dandy, but it is useless unless the 

resulting logarithm is converted back to the normal numbers by means 

of yet another transcendental equation. Thus for the simple apparent 

transcendental equation for pi, we have two other transcendental 

equations used multiple times. Let now consider the Taylor infinite 

series for ex. 

     Here is a little LIBERTY BASIC v4.03 program written to evaluate

the relative precision of this particular transcendental equation.

   REM LIBERTY BASIC v4.03 Program
   REM Taylor Antilog.bas
 INPUT "Enter number of terms  : "; t
 INPUT "Enter a value for ln(x): "; x
   LET n = 1
   LET a = 1
   LET b = 1
 WHILE n <= t
   LET c = a + (x^n/b)
 PRINT "n = "; using("##", n); "    ln(x) = "; using("#.########", c)
   LET n = n + 1
   LET b = b * n
   LET a = c
  WEND
   END
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     Here is a table arranged to show the antilogs of the preceding 

table in the same order.

Enter number of terms  : 20
Enter a value for ln(x): 1
n =  1    ln(x) = 2.00000000
n =  2    ln(x) = 2.50000000
n =  3    ln(x) = 2.66666667
n =  4    ln(x) = 2.70833333
n =  5    ln(x) = 2.71666667
n =  6    ln(x) = 2.71805556
n =  7    ln(x) = 2.71825397
n =  8    ln(x) = 2.71827877
n =  9    ln(x) = 2.71828153
n = 10    ln(x) = 2.71828180
n = 11    ln(x) = 2.71828183
n = 12    ln(x) = 2.71828183
n = 13    ln(x) = 2.71828183
n = 14    ln(x) = 2.71828183
n = 15    ln(x) = 2.71828183
n = 16    ln(x) = 2.71828183
n = 17    ln(x) = 2.71828183
n = 18    ln(x) = 2.71828183
n = 19    ln(x) = 2.71828183
n = 20    ln(x) = 2.71828183

Enter number of terms  : 20
Enter a value for ln(x): 2
n =  1    ln(x) = 3.00000000
n =  2    ln(x) = 5.00000000
n =  3    ln(x) = 6.33333333
n =  4    ln(x) = 7.00000000
n =  5    ln(x) = 7.26666667
n =  6    ln(x) = 7.35555556
n =  7    ln(x) = 7.38095238
n =  8    ln(x) = 7.38730159
n =  9    ln(x) = 7.38871252
n = 10    ln(x) = 7.38899471
n = 11    ln(x) = 7.38904602
n = 12    ln(x) = 7.38905457
n = 13    ln(x) = 7.38905588
n = 14    ln(x) = 7.38905607
n = 15    ln(x) = 7.38905610
n = 16    ln(x) = 7.38905610
n = 17    ln(x) = 7.38905610
n = 18    ln(x) = 7.38905610
n = 19    ln(x) = 7.38905610
n = 20    ln(x) = 7.38905610

Enter number of terms  : 20
Enter a value for ln(x): 3
n =  1    ln(x) =  4.00000000
n =  2    ln(x) =  8.50000000
n =  3    ln(x) = 13.00000000
n =  4    ln(x) = 16.37500000
n =  5    ln(x) = 18.40000000
n =  6    ln(x) = 19.41250000
n =  7    ln(x) = 19.84642857
n =  8    ln(x) = 20.00915179
n =  9    ln(x) = 20.06339286
n = 10    ln(x) = 20.07966518
n = 11    ln(x) = 20.08410308
n = 12    ln(x) = 20.08521256
n = 13    ln(x) = 20.08546859
n = 14    ln(x) = 20.08552346
n = 15    ln(x) = 20.08553443
n = 16    ln(x) = 20.08553649
n = 17    ln(x) = 20.08553685
n = 18    ln(x) = 20.08553691
n = 19    ln(x) = 20.08553692
n = 20    ln(x) = 20.08553692

Enter number of terms  : 20
Enter a value for ln(x): 4
n =  1    ln(x) =  5.00000000
n =  2    ln(x) = 13.00000000
n =  3    ln(x) = 23.66666667
n =  4    ln(x) = 34.33333333
n =  5    ln(x) = 42.86666667
n =  6    ln(x) = 48.55555556
n =  7    ln(x) = 51.80634921
n =  8    ln(x) = 53.43174603
n =  9    ln(x) = 54.15414462
n = 10    ln(x) = 54.44310406
n = 11    ln(x) = 54.54818021
n = 12    ln(x) = 54.58320560
n = 13    ln(x) = 54.59398264
n = 14    ln(x) = 54.59706180
n = 15    ln(x) = 54.59788291
n = 16    ln(x) = 54.59808818
n = 17    ln(x) = 54.59813648
n = 18    ln(x) = 54.59814722
n = 19    ln(x) = 54.59814948
n = 20    ln(x) = 54.59814993

     As we can see from these returns, any precision value of pi 

involves an unimaginably tedious procedure.
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     In order to use the transcendental equations for the 

trigonometric functions it was first essential to define pi. In 

natural trigonometry the angles are expressed in terms of radians. If

the radius of a circle is assigned a value of one, the circumference 

of the circle has a value of 2π. That is to say that the 

circumference of the circle is 2π times the radius of the circle. 

Thus, we get the term radians. This is a natural angle used and 

produced by the transcendental trigonometric equations.

Imprecise Precision in Mathematics



10

     There are two transcendental equations of note for approximating

the sine and the cosine respectively of an angle. In both cases the 

angle must be expressed in terms of radians. The transcendental 

equation for the tangent of an angle is more acrobatic. However, the 

tangent of an angle may readily be found by dividing the sine by the 

cosine. Both of the following transcendental equations are from the 

Taylor infinite series.

 

     Here is a little program that demonstrates the sine function.

   REM LIBERTY BASIC v4.03 program
   REM taylorSine.bas
 INPUT "Enter number of terms: "; t
 INPUT "Enter an angle in deg: "; q
   LET p = 3.14159265
   LET r = q * (p/180)
   LET n = 1   'begin count of terms after 1st term.
   LET f = 1   '1st term factorial
   LET b = 0
   LET e = 1
 WHILE n <= t
   LET a = -1^(n + 1)
   LET b = b + a * ((r^e)/f)
 PRINT "n = "; using("##",n); "    sin("; using("###",q); ") = "; 
using("##.########",b)
   LET f = f * (e + 1) * (e + 2)
   LET e = e + 2
   LET n = n + 1
  WEND
   END

     This program accepts the angle in degrees, converts it to 

radians, and then processes the value of the sine of the given angle.
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     Here is the cosine program. This program was not written using 

the given Taylor cosine infinite series, but rather a simple 

adjustment of the original given angle to shift it 90º out of phase 

using the Taylor infinite sine series.

   REM LIBERTY BASIC v4.03 program
   REM taylorCosine.bas
 INPUT "Enter number of terms: "; t
 INPUT "Enter an angle in deg: "; q
   LET p = 3.14159265
   LET r = (90 - q) * (p/180)
   LET n = 1   'begin count of terms after 1st term.
   LET f = 1   '1st term factorial
   LET b = 0
   LET e = 1
 WHILE n <= t
   LET a = -1^(n + 1)
   LET b = b + a * ((r^e)/f)
 PRINT "n = "; using("##",n); "    cos("; using("###",q); ") = "; 
using("##.########",b)
   LET f = f * (e + 1) * (e + 2)
   LET e = e + 2
   LET n = n + 1
  WEND
   END

     Let us examine some examples of these two small programs using 

the angles that will produce rational sines and cosines. In terms of 

degrees the following will apply:

     Sin(0º) =   0.00000000     Cos(0º) =    1.00000000

     Sin(30º) =  0.50000000

                                Cos(60º) =   0.50000000

     Sin(90º) =  1.00000000     Cos(90º) =   0.00000000

                                Cos(120º) = -0.50000000

     Sin(150º) = 0.50000000

     Sin(180º) = 0.00000000     Cos(180º) = -1.00000000

     The conversion is 180º = π rad.
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     Here are four discreet rational returns for the sine function.  

Enter number of terms: 20
Enter an angle in deg: 30
n =  1    sin( 30) =  0.52359878
n =  2    sin( 30) =  0.49967418
n =  3    sin( 30) =  0.50000213
n =  4    sin( 30) =  0.49999999
n =  5    sin( 30) =  0.50000000
n =  6    sin( 30) =  0.50000000
n =  7    sin( 30) =  0.50000000
n =  8    sin( 30) =  0.50000000
n =  9    sin( 30) =  0.50000000
n = 10    sin( 30) =  0.50000000
n = 11    sin( 30) =  0.50000000
n = 12    sin( 30) =  0.50000000
n = 13    sin( 30) =  0.50000000
n = 14    sin( 30) =  0.50000000
n = 15    sin( 30) =  0.50000000
n = 16    sin( 30) =  0.50000000
n = 17    sin( 30) =  0.50000000
n = 18    sin( 30) =  0.50000000
n = 19    sin( 30) =  0.50000000
n = 20    sin( 30) =  0.50000000

Enter number of terms: 20
Enter an angle in deg: 90
n =  1    sin( 90) =  1.57079633
n =  2    sin( 90) =  0.92483223
n =  3    sin( 90) =  1.00452486
n =  4    sin( 90) =  0.99984310
n =  5    sin( 90) =  1.00000354
n =  6    sin( 90) =  0.99999994
n =  7    sin( 90) =  1.00000000
n =  8    sin( 90) =  1.00000000
n =  9    sin( 90) =  1.00000000
n = 10    sin( 90) =  1.00000000
n = 11    sin( 90) =  1.00000000
n = 12    sin( 90) =  1.00000000
n = 13    sin( 90) =  1.00000000
n = 14    sin( 90) =  1.00000000
n = 15    sin( 90) =  1.00000000
n = 16    sin( 90) =  1.00000000
n = 17    sin( 90) =  1.00000000
n = 18    sin( 90) =  1.00000000
n = 19    sin( 90) =  1.00000000
n = 20    sin( 90) =  1.00000000

Enter number of terms: 20
Enter an angle in deg: 150
n =  1    sin(150) =  2.61799388
n =  2    sin(150) = -0.37258064
n =  3    sin(150) =  0.65227309
n =  4    sin(150) =  0.48502936
n =  5    sin(150) =  0.50094978
n =  6    sin(150) =  0.49995781
n =  7    sin(150) =  0.50000139
n =  8    sin(150) =  0.49999997
n =  9    sin(150) =  0.50000000
n = 10    sin(150) =  0.50000000
n = 11    sin(150) =  0.50000000
n = 12    sin(150) =  0.50000000
n = 13    sin(150) =  0.50000000
n = 14    sin(150) =  0.50000000
n = 15    sin(150) =  0.50000000
n = 16    sin(150) =  0.50000000
n = 17    sin(150) =  0.50000000
n = 18    sin(150) =  0.50000000
n = 19    sin(150) =  0.50000000
n = 20    sin(150) =  0.50000000

Enter number of terms: 20
Enter an angle in deg: 180
n =  1    sin(180) =  3.14159265
n =  2    sin(180) = -2.02612011
n =  3    sin(180) =  0.52404391
n =  4    sin(180) = -0.07522061
n =  5    sin(180) =  0.00692527
n =  6    sin(180) = -0.00044516
n =  7    sin(180) =  0.00002115
n =  8    sin(180) = -0.00000077
n =  9    sin(180) =  0.00000003
n = 10    sin(180) =  0.00000000
n = 11    sin(180) =  0.00000000
n = 12    sin(180) =  0.00000000
n = 13    sin(180) =  0.00000000
n = 14    sin(180) =  0.00000000
n = 15    sin(180) =  0.00000000
n = 16    sin(180) =  0.00000000
n = 17    sin(180) =  0.00000000
n = 18    sin(180) =  0.00000000
n = 19    sin(180) =  0.00000000
n = 20    sin(180) =  0.00000000

     Observe that eight place accuracy was achieved by the tenth term

of the series. However, it is still an imprecise approximation.
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     Here are four discreet rational returns for the cosine function.

Enter number of terms: 20
Enter an angle in deg: 60
n =  1    cos( 60) =  0.52359878
n =  2    cos( 60) =  0.49967418
n =  3    cos( 60) =  0.50000213
n =  4    cos( 60) =  0.49999999
n =  5    cos( 60) =  0.50000000
n =  6    cos( 60) =  0.50000000
n =  7    cos( 60) =  0.50000000
n =  8    cos( 60) =  0.50000000
n =  9    cos( 60) =  0.50000000
n = 10    cos( 60) =  0.50000000
n = 11    cos( 60) =  0.50000000
n = 12    cos( 60) =  0.50000000
n = 13    cos( 60) =  0.50000000
n = 14    cos( 60) =  0.50000000
n = 15    cos( 60) =  0.50000000
n = 16    cos( 60) =  0.50000000
n = 17    cos( 60) =  0.50000000
n = 18    cos( 60) =  0.50000000
n = 19    cos( 60) =  0.50000000
n = 20    cos( 60) =  0.50000000

Enter number of terms: 20
Enter an angle in deg: 90
n =  1    cos( 90) =  0.00000000
n =  2    cos( 90) =  0.00000000
n =  3    cos( 90) =  0.00000000
n =  4    cos( 90) =  0.00000000
n =  5    cos( 90) =  0.00000000
n =  6    cos( 90) =  0.00000000
n =  7    cos( 90) =  0.00000000
n =  8    cos( 90) =  0.00000000
n =  9    cos( 90) =  0.00000000
n = 10    cos( 90) =  0.00000000
n = 11    cos( 90) =  0.00000000
n = 12    cos( 90) =  0.00000000
n = 13    cos( 90) =  0.00000000
n = 14    cos( 90) =  0.00000000
n = 15    cos( 90) =  0.00000000
n = 16    cos( 90) =  0.00000000
n = 17    cos( 90) =  0.00000000
n = 18    cos( 90) =  0.00000000
n = 19    cos( 90) =  0.00000000
n = 20    cos( 90) =  0.00000000

Enter number of terms: 20
Enter an angle in deg: 120
n =  1    cos(120) = -0.52359878
n =  2    cos(120) = -0.49967418
n =  3    cos(120) = -0.50000213
n =  4    cos(120) = -0.49999999
n =  5    cos(120) = -0.50000000
n =  6    cos(120) = -0.50000000
n =  7    cos(120) = -0.50000000
n =  8    cos(120) = -0.50000000
n =  9    cos(120) = -0.50000000
n = 10    cos(120) = -0.50000000
n = 11    cos(120) = -0.50000000
n = 12    cos(120) = -0.50000000
n = 13    cos(120) = -0.50000000
n = 14    cos(120) = -0.50000000
n = 15    cos(120) = -0.50000000
n = 16    cos(120) = -0.50000000
n = 17    cos(120) = -0.50000000
n = 18    cos(120) = -0.50000000
n = 19    cos(120) = -0.50000000
n = 20    cos(120) = -0.50000000

Enter number of terms: 20
Enter an angle in deg: 180
n =  1    cos(180) = -1.57079633
n =  2    cos(180) = -0.92483223
n =  3    cos(180) = -1.00452486
n =  4    cos(180) = -0.99984310
n =  5    cos(180) = -1.00000354
n =  6    cos(180) = -0.99999994
n =  7    cos(180) = -1.00000000
n =  8    cos(180) = -1.00000000
n =  9    cos(180) = -1.00000000
n = 10    cos(180) = -1.00000000
n = 11    cos(180) = -1.00000000
n = 12    cos(180) = -1.00000000
n = 13    cos(180) = -1.00000000
n = 14    cos(180) = -1.00000000
n = 15    cos(180) = -1.00000000
n = 16    cos(180) = -1.00000000
n = 17    cos(180) = -1.00000000
n = 18    cos(180) = -1.00000000
n = 19    cos(180) = -1.00000000
n = 20    cos(180) = -1.00000000

     Observe that eight place accuracy was achieved by the fifth term

of the series. However, it is still an imprecise approximation.
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     Now let us consider the arc-sine and the arc-cosine. This is the

inversion of the preceding. Here is a Taylor infinite series that 

approaches the angle represented by [y/r]. This is the arc-sine. The 

arc-cosine is found by first solving for the arc-sine and then phase 

shifting it 90° (π/2). The return is expressed in terms of radians.

     Here is a LIBERTY BASIC v4.09 program that was written to 

evaluate this series.

   REM LIBERTY BASIC v4.03
   REM TaylorArcSinCos.bas
 INPUT "Enter number of terms: ";t
 INPUT "Enter number -1<=x<=1: ";x
   LET p = 3.14159265
   LET n = 1
   LET a = x
   LET b = a * (180/p)
   LET c = (p/2) - a
   LET d = c * (180/p)
 PRINT "n = "; using("###",n); "  sin(x) = "; using("###.########",b);
 PRINT                        "  cos(x) = "; using("###.########",d)
   LET n = 2
   LET e = 1
   LET f = 2
   LET g = 3
   LET h = e/f
 WHILE n <= t
   LET a = a + h * (x^g/g)
   LET b = a * (180/p)
   LET c = (p/2) - a
   LET d = c * (180/p)
 PRINT "n = "; using("#####",n); "  sin(x) = "; using("###.########",b);
 PRINT                        "  cos(x) = "; using("###.########",d)
   LET n = n + 1
   LET e = e + 2
   LET f = f + 2
   LET g = g + 2
   LET h = h * (e/f)
  WEND
   END
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     Let us consider the case of sin(Θ) 0.5. This is a known value. 

The arc-sine is equal to 30º or π/6. Now let us examine what happens 

over 20 terms.

Enter number of terms: 20
Enter number -1<=x<=1: .5
n =  1  sin(x) =  28.64788979  cos(x) =  61.35211021
n =  2  sin(x) =  29.84155186  cos(x) =  60.15844814
n =  3  sin(x) =  29.97583885  cos(x) =  60.02416115
n =  4  sin(x) =  29.99582203  cos(x) =  60.00417797
n =  5  sin(x) =  29.99922195  cos(x) =  60.00077805
n =  6  sin(x) =  29.99984784  cos(x) =  60.00015216
n =  7  sin(x) =  29.99996921  cos(x) =  60.00003079
n =  8  sin(x) =  29.99999362  cos(x) =  60.00000638
n =  9  sin(x) =  29.99999867  cos(x) =  60.00000133
n = 10  sin(x) =  29.99999974  cos(x) =  60.00000026
n = 11  sin(x) =  29.99999997  cos(x) =  60.00000003
n = 12  sin(x) =  30.00000002  cos(x) =  59.99999998
n = 13  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 14  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 15  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 16  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 17  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 18  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 19  sin(x) =  30.00000003  cos(x) =  59.99999997
n = 20  sin(x) =  30.00000003  cos(x) =  59.99999997

     As may be clearly seen, at 12 terms it is reasonably near what 

it should be, but then it pushes beyond very slightly.

     Let us look at the case of 45º or π/4. Sin(π/4) = 0.70710678

Enter number of terms: 20
Enter number -1<=x<=1: 0.70710678
n =     1  sin(x) =  40.51423421  cos(x) =  49.48576579
n =     2  sin(x) =  43.89042038  cos(x) =  46.10957962
n =     3  sin(x) =  44.65006226  cos(x) =  45.34993774
n =     4  sin(x) =  44.87614616  cos(x) =  45.12385384
n =     5  sin(x) =  44.95307748  cos(x) =  45.04692252
n =     6  sin(x) =  44.98140220  cos(x) =  45.01859780
n =     7  sin(x) =  44.99238710  cos(x) =  45.00761290
n =     8  sin(x) =  44.99680722  cos(x) =  45.00319278
n =     9  sin(x) =  44.99863539  cos(x) =  45.00136461
n =    10  sin(x) =  44.99940782  cos(x) =  45.00059218
n =    11  sin(x) =  44.99973978  cos(x) =  45.00026022
n =    12  sin(x) =  44.99988444  cos(x) =  45.00011556
n =    13  sin(x) =  44.99994821  cos(x) =  45.00005179
n =    14  sin(x) =  44.99997660  cos(x) =  45.00002340
n =    15  sin(x) =  44.99998934  cos(x) =  45.00001066
n =    16  sin(x) =  44.99999511  cos(x) =  45.00000489
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n =    17  sin(x) =  44.99999773  cos(x) =  45.00000227
n =    18  sin(x) =  44.99999893  cos(x) =  45.00000107
n =    19  sin(x) =  44.99999948  cos(x) =  45.00000052
n =    20  sin(x) =  44.99999973  cos(x) =  45.00000027

     This too at 20 terms is approaching what it should be. Let us 

examine the case for 60º or π/3. sin(π/3) = 0.86602540

Enter number of terms: 20
Enter number -1<=x<=1: 0.86602540
n =   1  sin(x) =  49.61960043  cos(x) =  40.38039957
n =     2  sin(x) =  55.82205043  cos(x) =  34.17794957
n =     3  sin(x) =  57.91537728  cos(x) =  32.08462272
n =     4  sin(x) =  58.84989819  cos(x) =  31.15010181
n =     5  sin(x) =  59.32689324  cos(x) =  30.67310676
n =     6  sin(x) =  59.59032459  cos(x) =  30.40967541
n =     7  sin(x) =  59.74357071  cos(x) =  30.25642929
n =     8  sin(x) =  59.83606569  cos(x) =  30.16393431
n =     9  sin(x) =  59.89344998  cos(x) =  30.10655002
n =    10  sin(x) =  59.92981854  cos(x) =  30.07018146
n =    11  sin(x) =  59.95326326  cos(x) =  30.04673674
n =    12  sin(x) =  59.96858805  cos(x) =  30.03141195
n =    13  sin(x) =  59.97872157  cos(x) =  30.02127843
n =    14  sin(x) =  59.98548808  cos(x) =  30.01451192
n =    15  sin(x) =  59.99004422  cos(x) =  30.00995578
n =    16  sin(x) =  59.99313431  cos(x) =  30.00686569
n =    17  sin(x) =  59.99524338  cos(x) =  30.00475662
n =    18  sin(x) =  59.99669094  cos(x) =  30.00330906
n =    19  sin(x) =  59.99768939  cos(x) =  30.00231061
n =    20  sin(x) =  59.99838113  cos(x) =  30.00161887
 

     This looks reasonable as well. At 20 terms evaluated it is a 

close approximation. 

     However, when x = 1 the whole sequence stands on end. The 

sequence still returns the correct answer, but the number of required

terms becomes astronomical! Observe that at 90º or π/2, sin(π/2) = 1.

Here is an abridged version of the run. 

Enter number of terms: 99999
Enter number -1<=x<=1: 1
n =     1  sin(x) =  57.29577958  cos(x) =  32.70422042
n =    11  sin(x) =  80.21896051  cos(x) =   9.78103949
n =   111  sin(x) =  86.93063782  cos(x) =   3.06936218
n =  1111  sin(x) =  89.03014480  cos(x) =   0.96985520
n = 11111  sin(x) =  89.69332907  cos(x) =   0.30667093
n = 99999  sin(x) =  89.89777677  cos(x) =   0.10222323

     This return is not acceptable by any means!
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     Using this particular Taylor series, the only way to obtain a 

reasonable degree of precision is to break the angle into ±45º 

sections and exchange the sine for the cosine and vice versa. Thus, 

for the arc-sine when x = 0.86602540, you take the square root of (1-

0.866025402)1/2 = 0.5), use x = 0.5 instead, and treat it as the 

cosine. The desired sine is now π/2 - asin(0.5) or 90º - 30º = 60º.

     Now we come to the infinite Taylor series for the arc-tangent. 

This series is in two parts. One part is for a tangent that is less 

than or equal to one and the other part is for a tangent that is 

greater than one. This combination essentially does a ±45º degree 

breakdown as previously discussed. The return of course is expressed 

in terms of radians.

   REM LIBERTY BASIC v4.03 program
   REM TaylorTan.bas
 INPUT "Enter number of terms:          "; t
 INPUT "Enter the value of the tangent: "; x
   LET p = 3.14159265
    IF x >= -1 AND x <= 1 THEN
   LET n = 1
   LET c = 0
 WHILE n <= t
   LET a = 2 * n - 1
   LET b = -1^(n + 1)
   LET c = c + b * (x^a/a)
   LET d = c * (180/p)
 PRINT "n = "; using("####",n); "  atan("; using("#.########",x); ") = "; using("###.########",d)
   LET n = n + 1
  WEND
END IF
    IF x < -1 OR x > 1 THEN
   LET n = 1
   LET c = p/2
   LET d = c * (180/p)
 PRINT "n = "; using("####",n); "  atan("; using("###.########",x); ") = "; using("###.########",d)
   LET n = 2
 WHILE n <= t
   LET a = 2 * n - 3
   LET b = -1^(n + 1)
   LET c = c + b * (1/(a * x^a))
   LET d = c * (180/p)
 PRINT "n = "; using("####",n); "  atan("; using("###.########",x); ") = "; using("###.########",d)
   LET n = n + 1
  WEND
END IF
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     The preceding Taylor infinite series is followed by a LIBERTY 

BASIC 4.03 program. Let us now take a look at some predefined sample 

runs.

Enter number of terms:          20
Enter the value of the tangent: 0
n =    1  atan(0.00000000) =   0.00000000
n =    2  atan(0.00000000) =   0.00000000
n =    3  atan(0.00000000) =   0.00000000
n =    4  atan(0.00000000) =   0.00000000
n =    5  atan(0.00000000) =   0.00000000
n =    6  atan(0.00000000) =   0.00000000
n =    7  atan(0.00000000) =   0.00000000
n =    8  atan(0.00000000) =   0.00000000
n =    9  atan(0.00000000) =   0.00000000
n =   10  atan(0.00000000) =   0.00000000
n =   11  atan(0.00000000) =   0.00000000
n =   12  atan(0.00000000) =   0.00000000
n =   13  atan(0.00000000) =   0.00000000
n =   14  atan(0.00000000) =   0.00000000
n =   15  atan(0.00000000) =   0.00000000
n =   16  atan(0.00000000) =   0.00000000
n =   17  atan(0.00000000) =   0.00000000
n =   18  atan(0.00000000) =   0.00000000
n =   19  atan(0.00000000) =   0.00000000
n =   20  atan(0.00000000) =   0.00000000

     This looks good. The tangent of 0 is always by definition 

exactly 0. Let us do the same with one.

Enter number of terms:          20
Enter the value of the tangent: 1
n =    1  atan(1.00000000) =  57.29577958
n =    2  atan(1.00000000) =  38.19718639
n =    3  atan(1.00000000) =  49.65634230
n =    4  atan(1.00000000) =  41.47123093
n =    5  atan(1.00000000) =  47.83742866
n =    6  atan(1.00000000) =  42.62872143
n =    7  atan(1.00000000) =  47.03608909
n =    8  atan(1.00000000) =  43.21637045
n =    9  atan(1.00000000) =  46.58671043
n =   10  atan(1.00000000) =  43.57114308
n =   11  atan(1.00000000) =  46.29951354
n =   12  atan(1.00000000) =  43.80839268
n =   13  atan(1.00000000) =  46.10022387
n =   14  atan(1.00000000) =  43.97815796
n =   15  atan(1.00000000) =  45.95387449
n =   16  atan(1.00000000) =  44.10562354
n =   17  atan(1.00000000) =  45.84185929
n =   18  atan(1.00000000) =  44.20483701
n =   19  atan(1.00000000) =  45.75337159
n =   20  atan(1.00000000) =  44.28424904
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     Notice how the results go alternately high and low while the 

differences become smaller and smaller. At a certain number of terms 

the last two results could be averaged to produce an apparent 

precision result within the desired range. By definition the arc-

tangent of one is always π/4 rad or 45º. Now let us consider two 

irratiuonal cases that are not defined.

Enter number of terms:          20
Enter the value of the tangent: 0.1
n =    1  atan(0.10000000) =   5.72957796
n =    2  atan(0.10000000) =   5.71047936
n =    3  atan(0.10000000) =   5.71059396
n =    4  atan(0.10000000) =   5.71059314
n =    5  atan(0.10000000) =   5.71059314
n =    6  atan(0.10000000) =   5.71059314
n =    7  atan(0.10000000) =   5.71059314
n =    8  atan(0.10000000) =   5.71059314
n =    9  atan(0.10000000) =   5.71059314
n =   10  atan(0.10000000) =   5.71059314
n =   11  atan(0.10000000) =   5.71059314
n =   12  atan(0.10000000) =   5.71059314
n =   13  atan(0.10000000) =   5.71059314
n =   14  atan(0.10000000) =   5.71059314
n =   15  atan(0.10000000) =   5.71059314
n =   16  atan(0.10000000) =   5.71059314
n =   17  atan(0.10000000) =   5.71059314
n =   18  atan(0.10000000) =   5.71059314
n =   19  atan(0.10000000) =   5.71059314
n =   20  atan(0.10000000) =   5.71059314

     As we can see, this run is quickly is reduced to an eight place 

precision. Now let us look at the inversion of this entry where the 

tangent is flipped with cotangent. The entry was 0.1 so the inversion

must be 1/0.1 = 10.  

Enter number of terms:          20
Enter the value of the tangent: 10
n =    1  atan( 10.00000000) =  90.00000000
n =    2  atan( 10.00000000) =  84.27042204
n =    3  atan( 10.00000000) =  84.28952064
n =    4  atan( 10.00000000) =  84.28940604
n =    5  atan( 10.00000000) =  84.28940686
n =    6  atan( 10.00000000) =  84.28940686
n =    7  atan( 10.00000000) =  84.28940686
n =    8  atan( 10.00000000) =  84.28940686
n =    9  atan( 10.00000000) =  84.28940686
n =   10  atan( 10.00000000) =  84.28940686
n =   11  atan( 10.00000000) =  84.28940686
n =   12  atan( 10.00000000) =  84.28940686
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n =   13  atan( 10.00000000) =  84.28940686
n =   14  atan( 10.00000000) =  84.28940686
n =   15  atan( 10.00000000) =  84.28940686
n =   16  atan( 10.00000000) =  84.28940686
n =   17  atan( 10.00000000) =  84.28940686
n =   18  atan( 10.00000000) =  84.28940686
n =   19  atan( 10.00000000) =  84.28940686
n =   20  atan( 10.00000000) =  84.28940686

     As can be seen, this too quickly settles down to an apparent 

acceptable eight place precision.

     There are many other transcendental equations and many more 

computer programs to work them out to a desired degree of precision. 

However, they are still imprecise! 

     In our current age of electronic computers, we lose site of the 

complexity of the machines and the exotic processes in the 

manufacture of the components. We forget that a mere 50 years ago our

integrated circuits (IC) of MOSFETS and DIODES were being done by 

much larger printed circuits (PC) were being used in basement 

buildings kept at a temperature of 50ºF. Before that, at the 

beginning of the computer age, the computers used electro-mechanical 

modules. This latter was a mere 80 years ago. 

     A computer at its core is nothing more than a binary abacus. The

largest number that may be processed is determined by the bit rating 

of the processor. For example, a 16 bit processor will have a 

capacity of 216 - 1 = 32,768 or four base 10 digits. This reminiscent 

of the first calculators. On the other hand, a 32 bit system will 

handle 232 = 1,073,741,824 or nine base 10 digits. Today, we have 

computers using 64 bit processors that can handle 264 = 

1,152,921,504,606,846,976 or eighteen base 10 digits. Howver, even 

this latter cannot work out pi (π) to the hundredth place!

     A modern computer has three processors. There is a BIOS that is 

used to access the peripheral hardware. There is the main processor. 

Finally, there is a math coprocessor which is a glorified calculator 
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chip. The math coprocessor has the most basic transcendental programs

hardwired and often has pi (π) to the 6th or 8th place hardwired as 

well. The other transcendental programs are introduced as software as

needed in sub-programs or header files.

Conclusion

     This document is not intended as a primer in computers or 

mathematics. Its intended purpose is to reveal the instability of the

technology and the errors in assuming that the apparent resulting 

precision is always correct. This all goes back to the rule of 

significant digits. The precision of the final solution of any series

of equations is no greater that the element with the least number of 

significant digits!

     The modern computer technology will fail due to its inate 

instabilities. It is too exotic and too subject to social, political,

and economic whims. It is too dependent upon consumerism!

     Before we had computers, we had the abacus and the slide rule. 

We had mechanical counters. Foremost of all; we had mathematics in 

the forms of addition, subtraction, multiplication, division, 

trigonometry, algebra, and calculus. 

     In writing the programs in this document, I have written them in

the BASIC language which is an English language interpretation of the

Boolean language of logic that came about long before computers. No 

computer is needed to work these programs. However, without the 

computer, any of these series will soon become very tedious.

     Wed 29 Nov 2023

     Patrick Richard Ahmatov
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